Dutch Bronze Age residential mobility: a commentary on the ‘wandering farmstead’ model

von Stijn Arnoldussen

Introduction

In the Low Countries, but also in adjacent areas, the Middle Bronze Age-B (c. 1500-1050 cal BC; hereafter MBA-B) is often seen as representing the culmination of the trajectories towards sedentism and true-mixed farming which take place during the final third and second millennium BC (Louwe Kooijmans 1993; Arnoldussen/Fontijn 2006). In this period, settlement sites become much more visible, and are known in much larger numbers, compared to the settlement sites of the preceding Late Neolithic and Early Bronze Age (Arnoldussen/Fontijn 2006; Arnoldussen in prep.). The long regular three-aisled longhouses, which are thought to house both cattle and man, are generally accompanied by several outbuildings and are thought to be situated within an (rectangular) area, defined by ditches or fences. Such a defined area comprising the farmhouse, outbuildings, open areas and possibly features like pits or wells, is usually labelled a ‘farmstead’. Despite the popularity of this concept, as is – for instance – evident from pictorial reconstructions of Bronze Age house-sites (Abb. 1, below), there has been little research aimed directly at assessing the nature and dynamics of such farmsteads. This implies that although an abundance of Bronze Age houses is known from the Low Countries (over 240 published houses), hardly any evaluation of what the direct surroundings of these farms looked like has been undertaken (but see Arnoldussen in prep.).

The substantial nature of the large MBA-B farmhouses is sometimes interpreted as reflecting an increased permanency of occupation compared to preceding periods, possibly as a consequence of (the time and energy investment required in) crop-cultivation. Yet, regardless of their substantial nature, the location of the MBA domestic sites is thought to have shifted periodically: the farmsteads ‘wandered’ (Roymans/Fokkens 1991; Schinkel 1998). This model of the wandering of the farmsteads was predominantly based on the observations that MBA house-sites generally seem to represent a single phase of occupation. This means that estimates of the time-period lapsed between such relocations were not based on direct evidence. Rather, speculations on wood-durability, soil-depletion and the length of human generational cycles have led to 25-30 year cycles having been forwarded. Over the last decade, excavations carried out in the Dutch river area have yielded settlement sites where houses have regularly been rebuilt on the very same spot (sometimes even three times; Abb. 8; Hielkema, Brokke/Meijlink 2002, 145-150). Such observations are hard to reconcile with the dominant model of the wandering farmstead. Therefore, a critical discussion of the origins, key motives and the applicability of this ‘wandering farmstead’ model is much needed and will be the aim of this paper.

Historical background

The notion that prehistoric farmsteads periodically shifted their location originated from descriptions of native Roman period (e.g. Schindler 1956; Van Es 1967) and late Iron Age period (e.g. Becker 1971) settlement sites (cf. Kossock et al. 1984; Haarmagel/Schmidt 1984; Zimmermann 1997, 421; Schinkel 1998, 26). Such observations were generally based on two distinct patterns in the excavation data: either within the same settlement site farmhouses datable to a given period were absent whereas houses from the preceding and ensuing periods were documented (suggesting a ‘period of absence’), or alternatively superimposed houses could be dated to two non-consecutive phases (suggesting a ‘return’ to that specific location). As such, the ‘Wandersiedlungen/wandering farmstead’ model was thus largely a descriptive, rather than explanatory or predictive model, and was based on Iron Age to Roman period settlement sites.

Nonetheless, the model was quickly adopted to describe the results from excavations of settlement sites from a much wider range of landscapes and chronological pe-
Contemporary farmsteads (filled squares) which periodically (generationally) change location. No fixed funerary site; crosses indicate some isolated barrows. Open squares indicate farmsteads from other phases.

Filled grey houses represent farmsteads that shift location after some time. Filled black circles represent a household’s barrow, situated near the farmhouse. Open houses represent farmsteads from earlier phases. Local group territories (enclosing ovals) are relatively large and weakly defined.

Abb. 1: Pictorial reconstructions of MBA farmsteads. Left: Elp (NL; drawing by Mr. Dorst), middle: Telgte-Raestrup (D; after Wilhelmi 1983, 51 Abb. 43), right: Rumpt-Eigenblok (NL; drawing by Mr. Wilson in Carmiggelt 2001, 110).

Abb. 2: Model of the wandering farmsteads proposed by Roymans/Fokkens (1991, 12, Fig. 7: top) and revised model as proposed by Roymans/Kortlang (1999, 52, Fig. 10: below).
riods. In the Netherlands, it has become the dominant model in describing the domestic mobility for Bronze Age settlement sites (e.g. Waterbolk 1987, 203-204; Romans/Fok-kins 1991, 11; Theunissen 1997, 100; Fokkens 1998, 115; cf. Willroth 1996). Over time, the model has been expanded as to incorporate the (locations of) fields and barrows (see Abb. 2, below) and different factors have been forwarded as causing this domestic mobility (Arnoldussen in prep., chapter 3).

Motives and underlying assumptions

Three main arguments have been proposed as steering the periodical relocation of Bronze Age settlement sites, or later prehistoric settlement sites in general. These arguments must now be discussed in brief.

The most frequently encountered explanation for the relocation of Bronze Age house-sites is the idea that the durability of the construction wood used would have been a limiting factor. Allowing for different species of wood and thicknesses of the posts involved, 10 to 40 years seemed to be reasonable estimates (Purslow 1976; Bakels 1978, 79-82; IJzereef/Van Regteren Altena 1991, 74; Brinkkemper 1993, 43; Schinkel 1998, 27, but see below and Zimmermann 1998; 2006).

A second motive, previously indicated by Fokkens (2002, 134) is that often implicitly, it has been assumed that Bronze Age crop-cultivation quickly resulted in over-exploitation of the agricultural soils. The houses and fields were consequently both relocated (cf. Butler 1969, 68; Wilhelm 1983, 62; Haarnagel/Schmid 1984, 216; Bantelmann et al. 1984, 245; Kortlang 1999, 184; Spek 2004, 131-133; 975).

A third and more recently proposed suggestion (Gerritsen 2003, cf. Brück 1999, 149) is that changes in household composition – such as the marriage or death of a household member – may have been the primary force driving farmhouse relocation. Whereas such changes are virtually invisible from an archaeological perspective, both Gerritsen (2003) and Brück (1999) argue that ‘odd’ deposits related to the construction and abandonment of a house may provide some archaeological grip on otherwise elusive processes such as house-household interrelation. Conveniently enough, the assumed length of a human generational cycle, fits reasonably well with the figures suggested for the wood-durability (cf. Gerritsen 2003, 107).

Whereas several other motives for Bronze Age domestic mobility may be and have been forwarded (e.g. rodent infestation, landscape drowning, external social causes such as raids, socio-cultural reasons), the are mostly – if not all – characterized by a (very) local validity and low archaeological visibility and are therefore hardly verifiable.

How to test a model for domestic mobility?

The first step in testing the ‘wandering farmstead’ model would be to call for a critical evaluation of its defining concepts and underlying assumptions. To start, this would call for a discussion of the farmstead concept, which would take as well beyond the scope of the current paper (but see Roberts 1996, 16-19; Beck/Steuer 1997; Harding 2000, 22; Arnoldussen in prep.). Here, it suffices to state that the prehistoric farmhouse, together with granary-type outbuildings – usually being the archaeologically best visible part of a ‘farmstead’ – defines a prehistoric house-site. Farmsteads are house-sites which display a preferred or recurrent placement of house-sites elements such as outbuildings, pits and fences or ditches in relation to the farmhouse. If one accepts that prehistoric farmhouses are handles for discussing house-sites, we can confine ourselves to a discussion of the domestic mobility of houses proper below.

In addition, the ‘wandering farmstead’ model can be used to compile testable predictions. The periodical relocation of domestic sites predicts that Bronze Age house-sites are single-phased entities. Put otherwise, the model predicts that excavated Bronze Age house-sites consist of a single house ground plan. Also, it may be expected, that – certainly if the durability of wood played a significant role – rather than undertaking extensive repairs, relocation will have been the dominant strategy. Bronze Age houses can thus be suspected to show few signs of repair or major structural alterations such as extensions. With the extensive dataset on Dutch Bronze Age settlement sites and such hypotheses, the model for domestic mobility can actually be tested (see below). But first, let us now take a critical look at the three main motives which have been suggested to generate domestic mobility. I will start with the assumption that soil-depletion necessitated the periodical relocation of Bronze Age house-sites.

Soil-depletion and its relation to domestic mobility

The caveats with this assumption are reasonably obvious. The Netherlands comprise a wide range of geological landscapes, each with distinct benefits and limitations towards specific kinds of agricultural use (Abb. 3, below). Without going into too much detail, it is important to distinguish between the subsoils of Pleistocene age and those of Holocene genesis. The main Pleistocene areas comprise the northern parts and the southern parts of the Netherlands, divided by the central river area.

The northern areas were affected by Saale period glacia- tion. There (peri-)glacial phenomena such as the presence of boulder clay, moraine outcrops and ice-transported boulders can be encountered (Waterbolk 1995, 1). The southern boundary of this Saale glaciation is represented by the ice-pushed hills in the central and central-easten
parts of the Netherlands. The prehistoric occupation of the northern areas is strongly correlated to the parts of the landscape where moderately thick (20 cm) aeolian coversand deposits overlying the boulder-clay deposits – and nearby water – are found (Spek 1993; id. 2004, 116-121; 136-138). It has been suggested that, especially if no use was made of manuring, agricultural use might have led to deforestation, heath expansion and sand drifts (cf. Waterbolk 1985, 61; id. 1987, 204). Although soil-depletion apparently was indeed an intrinsic risk of these dry and mineral-poor sandy soil landscapes (Spek 2004, loc. cit.), it remains unsubstantiated that the cycles of agricultural shifts (e.g. of fields, fallow periods and/or crop-rotations) should coincide with those of the household (cf. Van Beek 2001, 57). There is, for instance, no evidence to assume that after several decades all agricultural plots in the vicinity of the house that could be economically viable or cost-efficiently be exploited, were rendered unsuitable for agricultural use.

More or less the same lines of reasoning apply to the Bronze Age settlement sites discovered on the southern Pleistocene coversands. Here too, Bronze Age occupation took place on the higher parts of sandy, yet loam-poor, gently undulating coversand landscapes. Based on some pollen-analyses and in comparison to the situation of the northern Netherlands, the two are suspected to have been prone to deforestation, heath-conversion and podzolisation (see Roymans/Theuwis 1999, 2; Schinkel 2005, 519; Gerritsen 2003, 226-228, but see De Hingh 2000, 159; 172-175). Yet accordingly, also for this area the link between the cycles of change of agricultural plots and relocation of the houses is unproven (cf. De Hingh 2000, 36; 209-210; Willroth 1996, 39).

Now lets turn to the two other main areas that have yielded high densities of Bronze Age occupation: the Dutch central river area and the West-Friesland inverted creek ridge landscape (see Abb. 3, above). Both are regions that were shaped by a persistent, gradual yet complex fluvial build-up during the Holocene and are as such distinctly different from the Pleistocene regions discussed previously. Yet, an important distinction needs to be made. The West-Friesland creek landscape became largely inactive, due to the closure of its coastal inlet, around the transition from the third to the second millennium BC (IJzereef/Van Regteren Altena 1991, 64). Due to processes of compaction, shrinkage and oxidation of the surrounding sediments, the former creek levees became the highest parts of the landscape (a process known as relief-inversion) and were densely settled near the end of the MBA-B. By contrast, in the central river area sedimentation continued throughout the entire Holocene period. Here, when rivers shifted their course (a process known as avulsion; Stouthamer 2001), a successor to the now fossil channel could normally be found within short (several kilometres) distance. The levee- and crevasse splay deposits of such inactive rivers were also densely settled during the MBA-B (Arnoldussen in prep.).

Despite these differences, these Holocene parts of the Netherlands are similar in one aspect vital to the current discussion. As both landscapes are of fluvial genesis, their subsoils (especially the levee- and crevasse splay deposits) consist of deposits very rich in mineral content and strongly calcareous in nature. These are soils very well suitable for crop-cultivation. For the river area, periodical flooding – resulting in the deposition of new organic matter and mineral-rich sediments – may have continually replenished the fertility of affected areas. To conclude, it seems unlikely that soil-depletion of these mineral rich soils ever was a problem for Bronze Age agriculture. Systematic analysis of crop weeds and evidence for manuring (cf. Brinkkemper 2002, 459-460) may in future confirm (or refute) this proposition.

Abb. 3: Simplified palaeogeographic map of the Netherlands around 3800 BP (after De Mulder et al. 2003, 228, Fig 143). Some larger geogenetic regions and the location of Bronze Age settlement sites which have yielded house-plans are indicated by the current author.

a. coastal and river dunes b. peat c. estuaries and tidal flats d. floodbasin deposits e. sand f. water g. Bronze Age settlement sites with houses h. extent of simplified geogenetic region.

At this point we can only conclude that if one wishes to use soil-depletion as a factor steering domestic mobility, it should be substantiated by analyses that take into account the locally variable properties of the subsoil and one should provide positive evidence (e.g. field weeds, manuring) that soil-depletion was a significant problem in the first place. Based on the brief discussion above, soil-depletion is likely to have been a variable risk for the various geogenetic regions of the Netherlands in prehistory. Lastly, the unwarranted assumption that an intertwined relocation of fields and house-sites occurred, further weakens the applicability of ‘soil-depletion’ as an explanation for Bronze Age domestic mobility.

The correlation of house- and household lifecycles

Inspired by a wide range of ethnographic examples, Fokke Gerritsen recently (1999; 2003) published his model for house and household interrelations (see Abb. 4, below). He discusses a number of societies wherein houses and household (come to) mutually define each other (Gerritsen 2003, chapter 3). Following a biographic approach (sensu Kopytoff 1986), Gerritsen analyses the construction-, habituation- and (post-)abandonment phases of later prehistoric houses and house-sites, in which foundation- and abandonment deposits are linked to distinct moments in the house-household cycle.

A systematic biographic approach to settlement site data is indeed very informative, and allows to differentiate between common-place and extraordinary ‘biographies’ of houses and house-sites. In fact, Gerritsen’s work is of great value for its specific, detailed and systematic analysis of settlement site data that is all too often ‘taken for granted’. Yet there is one major problem with interrelating house- and household life-cycles as Gerritsen does.

If we accept (even if only for the sake of the argument) that foundation deposits and abandonment deposits on later prehistoric settlement sites are reflecting rituals carried at house construction and abandonment, we are solely concerned with the house’s (i.e. the building) life-cycle. To assume that house-construction took place because of house-hold changes, does not inform us on the temporality of such changes. Social rules may have caused house construction and abandonment at moments (in the house-hold life-cycle) quite counter-intuitive to our western-modernist views of, for example, leaving house (prior to or) upon marriage. From cross-cultural studies it is clear that marriage and death of household members are often related to some form of domestic mobility (mostly neolocality), but claims that these – and not other – social causes motivated later prehistoric farmstead relocation are un-proven and are likely to remain so. Put otherwise: the ‘fit’ between the temporality of the life-cycles of houses and households is by no means universal and archaeologists cannot accordingly build narratives based on such propositions.

So let us now look at the data that actually are situated within the realm of archaeological research; foundation- and abandonment deposits. For a dissertation on the settlement dynamics of Bronze Age settlements sites in the Dutch central river area (Arnoudussen in prep.), an inventory of Bronze Age house plans has been compiled that comprises at least 224 Bronze Age houses that have been published in sufficient detail to allow discussion in this article. Of these 224 Bronze Age houses only three have yielded acceptable evidence for foundation deposits (Abb. 5, below).

At Hoogkarpel, two miniature ceramic cups were recovered from one of the roof-bearing posts of a three-aisled farmhouse. Presumably, this house was rebuilt and from a posthole of the entrance portal of its successor, yet another miniature cup was retrieved (Fig. 5 above; Van den Broeke 2005, 660, cf. Bourgeois, Cherreté/Bourgeois 2003, 179; 268-269).

A house ground plan from Rhenen that presumably dates to the 12th or 11th century BC, yielded a small pegged bronze spearhead (Van Hoof/Meurkens in press; for other examples of bronze weaponry deposited on Bronze Age settlement sites see Nowakowski 2001, 145; Fontijn 2003, 144-147; Ziermann 2004, 408; Gaffrey/Deiters 2005). This spearhead was retrieved in a relatively horizontal position from high up in one of the postholes of a roof-bearing post. As it could not be discerned whether the spearhead was situated in the posthole or the post-pipe, the possibility remains that this find represents activities carried out upon abandonment, instead of upon construction.

From a posthole of a wall-post of a Late Bronze Age house at Boxmeer, over 3 kg of secondarily burned ceramics were recovered (Van der Velde 1998, 23; Van den Broeke 2002, 52). A similar situation was encountered at Sittard, where the post-pipes of two roof-bearing posts of a Late Bronze Age house yielded over 100 secondarily burned sherds and a fragment of a loom-weight (Tol/ Schabbink 2004, 27). These two examples seem to indicate a Late Bronze Age start of an Iron Age pattern of interring secondarily burned ceramics into postholes upon abandonment for which some more (Iron Age) examples have been documented (Van den Broeke 2002).

In addition to the examples presented above, several other 'odd' deposits may hint of house-related depositional acts in the Bronze Age (e.g. Jongste 2002b; Meijlink/Kranendonk 2002, 197; 252; Fontijn 2003, 144-147; Therkorn in prep.), but these are too inconclusive to discuss here at length. The point I want to make here is that if we accept the examples above as evidence of Bronze Age foundation (three) and abandonment (two) rituals, we are dealing with occurrences with frequencies of slightly above 1% in both cases. Put otherwise, for the overwhelming majority (>98%) of the houses, deposition of inorganic material was not part of the rituals executed at house construction or abandonment.

If we want to use a biographic approach to Bronze Age house(hold) histories as Gerritsen (2003) proposes, it is evident that we are – when discussing foundation- and/or abandonment deposits – dealing with highly particular biographies. In more typical or ordinarily biographies, non-organic depositions associated with key elements of the house(hold) lifecycle seem not to have been of prime importance.

On the longevity of wood used on Bronze Age housesites

In many accounts on later prehistoric settlement dynamics, the limited durability of the construction wood used has been forwarded as a cause driving domestic mobility. Generally, a 30 year lifespan is assumed for Bronze- and Iron Age houses (for references see above). Some points however need to be kept in mind.

The first is that the experiments, on which estimates for the use-life of construction wood are often based, have usually been conducted 'out in the open'. This means that the wood was fully exposed to the elements and biotic processes. Construction wood is generally sheltered from rain, thus slowing down moisture-enhanced processes of decay.

Furthermore, the outer parts of posts could and have been protected to slow down rotting by charring (C. Huitjs in: Boivin 2003, 32; cf. Draiby 1991, 129; Vallet et al.1997, 85) or other methods of pre-treatment (not yet documented for the Bronze Age) such as reducing the diameter to the inner hardwood proper, or applying a tar or clay plastering (Zimmermann 2006, 298-300).

A final comment is that even complete rotting of roof-bearing posts need not always have caused full-scale structural instability (Reynolds 1995). If the superstructure was adequately rigid (interconnected), rotting of the roof-bearing posts at ground level need not have led to the abandonment of a given building. Zimmerman (2006, 295), however, questions whether this also applies to long rectangular houses, as the observation were made on experimentally reconstructed round houses. In addition, repairs of posts rotting beyond what was considered acceptable was always an option (see below).

In any case, based on historical data and experiments, life-expectancies for buildings constructed with wooden earthfast posts range from a little as ten years to a century and possibly even longer (Zimmermann 2006, 303). The exact use-life is determined by the complex – and archaeologically not disentanglable – interplay of wood species, diameter, removal of soft-wood, types of pre-treatment, soil-type, humidity and types of maintenance applied. Luckily, the good state of organic preservation of Bronze Age settlement sites remains from the Dutch river area provides some direct indications.

At the excavation called 'Eigenblok' near the hamlet of Rumpt, parts of several MBA-B house-sites have been excavated (Jongste/Van Wijngaarden 2002). At house-site five (Fig. 6, below), most (all alder) post-stumps had been preserved and two roof-bearing posts were radiocarbon dated to c. 1495-1400 cal BC (GrN-23647: 3165±15 BP and GrN-23646: 3155±15 BP; Jongste 2002, 35).

A post-stump from a nearby outbuilding was radiocarbon dated to c. 1410-1270 cal BC (GrN-23838: 3070 ± 20 BP; id.). This means that this outbuilding could be con-
temporaneous, but may also be as much as 225 years younger than the house. If midpoints dates in cal BC for both structures are used, this outbuilding could be 107 years younger. Another outbuilding could be dated by an alder post-stump (GrN-23873: 3060 ± 20 BP; loc. cit.) and a sample of cereals (GrN-24101: 3025 ± 25 BP; id.). Using the former, this outbuilding was erected at the same time or as much as 235 years later. Midpoints in calibrated years BC would suggest an 117 year age difference. The low feature density and the corresponding orientations of house and outbuildings suggest that these two outbuildings were indeed part of a single house-site, which may have existed for (over) a century. One could, however, object that this is an unique example. So let us now look at a second case.

Over a nearly forty year period, an area of 2.4 ha of a MBA settlement site has been excavated near the hamlet of Zijderveld in the central Dutch river area (Theunissen/Hulst 1999; Knippenberg/Jongst 2005). Although four
MBA-B house-sites were uncovered, construction wood was only preserved on one of these (Abb. 7, below). One alder post-stump of the farmhouse was radiocarbon dated to c. 1500-1300 cal BC (GrN-28929: 3120 ± 30 BP) and two oak posts could be dated by dendrochronology to 1421 ± 5 cal BC and 1396 ± 6 cal BC respectively (Knippenberg/Jongste 2005, 17). The two latter dates indicate that this house was constructed between 1426 and 1390 cal BC.

An older post which was presumably added later-on to reinforce the eastern short side entrance, was dated to c. 1390-1120 cal BC (GrN-28932: 3025 ± 30 BP; loc. cit.), suggesting a reinforcement after 156 years if midpoints are used. In a more plausible scenario, this repair might have taken place after several decades.

If one looks at the three dates available for the nine-post outbuildings to the north of this house, again remarkable outcomes are present. One oak post could be dated by dendrochronology to 1483 ± 6 cal BC (id.), suggesting that either this outbuilding predated the house or – more likely – that construction wood of already significant (51-99 years) age was (re)used for the construction. Another nine-post outbuilding yielded an oak post that could be dated to 1374 ± 5 BC (id.), suggesting that it was constructed between 11 to 57 years after the house or (using midpoints), after 37 years. This outbuilding was presumably replaced by yet another nine-poster of which an alder post was dated to c. 1420-1260 cal BC (GrN-28927: 3080 ± 30 BP (id.)), indicating that it was broadly contemporary to 130 years younger and – if using midpoints – 71 years younger than the house. There is one final relevant date for this house-site. After a given period, the eaves-drip gullies to the south of the house were redug (Abb. 7, above). The northern drip gully, however was not redug in the same manner. Here, instead a large pit was dug that presumably interconnected laterally to the eaves-drip gully. The shape of this pit suggests that it respected the presence of the former drip-gully and the house-wall. This pit presumably was a drinking pool for cattle, which was fed by the roof’s watershed. Cattle hoof-imprints around it testify to this function. From the bottom fill of the drinking pool, a worked oak fragment was recovered that was dated by dendrochronology to 1345 cal BC exact. This means that this pool was not filled-in until 45 to 81 years after the construction of the house. Just to stress once more, for this site too, the low feature density and corresponding orientation of the outbuildings to the farmhouse suggest that these belonged to a single house-site (Arnoldussen in prep.).

These direct data from Rumpt and Zijderveld indicate that where direct dates (i.e. construction wood dated) could be obtained, repairs occurred and outbuildings were (re)built several decades after the construction of a MBA farmhouse. This to me suggest that, rather than the 20-40 years usually suggested for the life-span of Bronze Age farmsteads, figures above five decades (approaching a century?) appear very reasonable. This, however, complicates the convenient fit between house and house-hold cycles from the viewpoint of neolocality at the interval of a human generation. Perhaps such house(-site)s functioned as a home base for ample generations (of a specific kin group?), rather than as providing housing for a(n extended) household only once.

Testing the ‘wandering farmstead’ predictions

It has already been stated above that universal validity of the ‘wandering farmstead’ would leave distinct patterns: one might expect few repairs and exclusively single-phased house-sites. A preliminary analysis of over 160 MBA house(s)ite)s from the Netherlands, however hints of a far more complex system of domestic mobility (table 1, below).

<table>
<thead>
<tr>
<th>Total houses</th>
<th>Overbuilt S</th>
<th>Overbuilt H</th>
<th>Extended</th>
<th>Rebuilt</th>
<th>Repaired</th>
</tr>
</thead>
<tbody>
<tr>
<td>161</td>
<td>12</td>
<td>21</td>
<td>10</td>
<td>17</td>
<td>26</td>
</tr>
</tbody>
</table>

Table 1: Structural interrelations and modifications for a number of Dutch MBA house plans.

In this table is listed how many houses are overbuilt by other structures (S), houses (H) and whether or not they showed signs of having been enlarged (extended), rebuild or repaired (cf. Gerritsen 2003, 77). The difference between rebuilding and overbuilding should perhaps be clarified. I classify a house as rebuilt when it is sufficiently similar in construction technique that one might assume that those building the second house had intimate knowledge on the structural properties of the one that preceded it. This is no hard science, but usually the similarities in construction techniques, location and orientation of the two superimposed house-phases allow for such (arbitrary) inferences (see for example Abb. 8). In overbuilding, the superimposed houses differ sufficiently in building technique and orientation as to assume the presence of hiatuses or a palimpsest situation.

The figures in table 1 indicate that repairs are a moderately frequent (c. 15 %) phenomenon, which is perhaps less surprising considering the use-life of farmsteads suggested above. Even more striking, however, is the fact that a comparable percentage of the houses were not at all single-phased as the ‘wandering’ farmstead model would have it, but were extended or rebuilt (together c. 17 %).

Clearly, more differentiated models are needed. This becomes especially salient if regional differences within the Netherlands are accounted for. Based on a preliminary analysis by the author, the rebuilding of houses seems to
be a property of house-sites in the Dutch river area (Arnoldussen in prep.) and the West-Friesland inverted creek landscape (id.; IJzereef 1989; IJzereef/Van Regteren Altena 1991), whereas the extension of houses occurred predominantly in the northeast(s) part of the Netherlands (e.g. Kooi 1991; in prep.). To better characterize such regional differences calls for additional analysis that is again well beyond the scope of the current paper.

Conclusions

In this article I have outlined the origin, uses and underlying assumptions of the dominant model for explaining domestic mobility in later prehistoric settlement sites in the Netherlands: the ‘wandering farmstead model’. I have argued that this model is rarely critically examined, nor have its underlying assumptions been sufficiently challenged.

The three commonly argued incentives behind periodic relocation of a Bronze Age farmstead are wood-rot, changes in household composition and soil-depletion.

As for the latter point I have argued that soil-depletion is no universally valid explanation and must be supported by local soil-investigation in order to have any credibility. In addition, I have questioned whether the periodic relocation of fields needs to have had any relevance for the relocation of the houses from which these fields were worked.

Concerning the second point, I have indicated that although the cycles of houses and household may have been related in some way, we are as archaeologists clueless as to the specific causes and periodicities of such social incentives. In any case, for the Bronze Age period foundation deposits and abandonment deposits are too rare to allow inferences and do not accordingly corroborate an assumed fit between the life cycles of houses and households.

On the durability of prehistoric wood, I hope to have shown that the few strands of evidence available for the longevity of Bronze Age construction wood used on house-sites, point towards life-expectancies of Bronze Age house-sites that may be double, or threefold the 30 year mean period often assumed.

Also, I have argued – based on preliminary analyses – that the presence of house-sites whose house was (repeatedly) rebuild or extended do occur in significant numbers (c. 15 %) and that a more nuanced model for domestic mobility than that of the ‘wandering farmsteads’ is consequently needed. In such a model, regional differences between the different geogenetic of the Netherlands must be accounted for. ¹

¹ Manuscript closed on Febr. 2007.
References

Kossack/Behre/Schmid 1984: G. Kossack/K.-E. Behre/P. Schmid (Hrsg.), Archäologische und naturwissenschaft liche Untersuchungen an ländlichen und frühstädti-
ancestors of the Urnfield period and the Middle Ages in the Southern Netherlands. Amsterdam Archaeological Studies 4 (Amsterdam 1999) 1-32.

Therkm in prep.: L.L. Therkm, Marking while taking land into use: some indications for long-term traditions from the Early Bronze Age onwards within the Oer-IJ estuarine region (Province of Noord-Holland). In: S. Arnoldussen/H. Fokkens (Hrsg.), Bronze Age settlement sites in the Low Countries (Oxford in prep./2007).

Sonderdruck aus:
Beiträge zur Ur- und Frühgeschichte
Mitteleuropas 53

Varia neolithica V

Mobilität, Migration und Kommunikation in Europa während des Neolithikums und der Bronzezeit

Beiträge der Sitzungen der Arbeitsgemeinschaften Neolithikum und Bronzezeit während der Jahrestagung des West- und Süddeutschen Verbandes für Altertumsforschung e. V. in Xanten, 6. – 8. Juni 2006

Herausgegeben von
Alexandra Krenn-Leeb, Hans-Jürgen Beier, Erich Claßen
Frank Falkenstein und Stefan Schwenzer

BEIER & BERAN. ARCHÄOLOGISCHE FACHLITERATUR
LANGENWEISSBACH 2009
<table>
<thead>
<tr>
<th>Autor/In</th>
<th>Titel</th>
<th>Seiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hans-Jürgen Beier</td>
<td>Überlegungen „Wandern oder nicht Wandern – das ist hier die Frage“. Einige theoretische Überlegungen zur Möglichkeit des Nachweises eines archäologischen Wunschtraumes</td>
<td>3 – 5</td>
</tr>
<tr>
<td>Stefan Schwenzer</td>
<td>Kommunikationskonzepte in der prähistorischen Archäologie</td>
<td>7 – 19</td>
</tr>
<tr>
<td>Peter J. Suter & Albert Hafner</td>
<td>Lenk, Schnidejoch. Funde aus dem Eis – ein vor- und frühgeschichtlicher Passübergang im Berner Oberland, Schweiz</td>
<td>21 – 30</td>
</tr>
<tr>
<td>Roland Prien</td>
<td>Variationen eines Themas: Die Ausbreitung der ältesten linienbandkeramischen Kultur in Mitteleuropa als Beispiel für eine neolithische Wanderungsbewegung</td>
<td>31 – 37</td>
</tr>
<tr>
<td>Joanna Pyzel</td>
<td>Migration und Kontakte in der Bandkeramik Kujawiens</td>
<td>49 – 52</td>
</tr>
<tr>
<td>Ute Seidel</td>
<td>Michelsberger Erdwerke im Raum Heilbronn – Kultort oder Fluchtburg?</td>
<td>65 – 72</td>
</tr>
<tr>
<td>Jonas Beran</td>
<td>Trichterbecherkultur und donauländische Restgruppen. Populationsdynamik zwischen norddeutscher Tiefebene und Mittelgebirgszone im Lichte neuer paläogenetischer Untersuchungen</td>
<td>73 – 87</td>
</tr>
<tr>
<td>Renata Zych</td>
<td>The Funnel Beaker Culture Settlement of the Sandomierz Valley</td>
<td>89 – 94</td>
</tr>
<tr>
<td>Thomas Link</td>
<td>Das Ende der spätneolithischen Tellsiedlungen im Karpatenbecken – der Beginn einer mobilen Lebensweise?</td>
<td>95 – 101</td>
</tr>
<tr>
<td>Agatha Reingruber</td>
<td>Mobilität an der Unteren Donau in der Kupferzeit: Pietrele im Netz des Warenverkehrs</td>
<td>103 – 111</td>
</tr>
<tr>
<td>Daniela Kern</td>
<td>Überlegungen zu Mobilität und Migration im Endneolithikum Ostösterreichs am Beispiel des Unteren Traisentales</td>
<td>113 – 119</td>
</tr>
<tr>
<td>Eric Drenth & Eric Lohof</td>
<td>Mobilität während des Endneolithikums und der Bronzezeit. Eine allgemeine Übersicht für die Niederlande</td>
<td>121 – 132</td>
</tr>
<tr>
<td>Autor</td>
<td>Titel</td>
<td>Seitenzahl</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>Tobias Kienlin</td>
<td>Anmerkungen zu Gesellschaft und Metallhandwerk der Frühbronzezeit</td>
<td>133–146</td>
</tr>
<tr>
<td>Stijn Arnoldussen</td>
<td>Dutch Bronze Age residential mobility: a commentary on the ‘wandering farmstead’ model</td>
<td>147–159</td>
</tr>
<tr>
<td>David Fontijn</td>
<td>Mittelbronzezeitliche Kriegergräber und Waffendeponierungen in Nordbelgien und den Niederlanden</td>
<td>161–169</td>
</tr>
<tr>
<td>Immo Heske</td>
<td>Kultpersonal in einer fremden Welt. Deponierungen mit gegossenen Bronzebecken an der Peripherie der Nordischen Bronzezeit</td>
<td>171–179</td>
</tr>
<tr>
<td>Marianne Mödlinger</td>
<td>Herstellung und Verwendung bronzezeitlicher Schwerter in Österreich</td>
<td>181–188</td>
</tr>
<tr>
<td>Barbara Horjes</td>
<td>Alltagskulturen und Eliten zwischen Karpatenbecken und Ägäis. Verschiedene Kommunikationsmodelle?</td>
<td>197–207</td>
</tr>
<tr>
<td>Tobias Mühlenbruch</td>
<td>Die Burg von Tiryns im Rahmen postpalatialer mykenischer Mobilität</td>
<td>217–225</td>
</tr>
</tbody>
</table>