Expressing monumentality: some observations on the dating of Dutch Bronze Age barrows and houses

Quentin BOURGEOIS¹ & Stijn ARNOLDUSSEN²

1. Introduction

Pictorial reconstructions of Bronze Age settlement sites often present us with a snapshot-view of a distinct ‘set’ of structures and features that are thought to have been contemporaneous. In these reconstructions, a Bronze Age longhouse with its outbuildings takes centre-stage, surrounded by paths, fences and often a barrow (Fig. 1 below).

This assumed and depicted contemporaneity of barrows and houses is not a selective representation for the general public, but also used by professional archaeologists in establishing models for Bronze Age settlement dynamics, sometimes using barrows as indicators of settlement, or viewing these as legitimising the nearby occupation.

We are hesitant to accept this image of closely associated, contemporary Bronze Age barrows and houses. As we will argue below, the available radiocarbon evidence suggests that new barrows were predominantly erected during the first half of the MBA, whereas recognisable houses appear to date from the second half of the MBA. This is not to imply that no new mound periods or secondary interments were added to existing barrows during the second half of the MBA, but that the initial phase of these mounds usually dates to an earlier period. As three-aisled Bronze Age longhouses date from the second half of the MBA, in our opinion, the erection of new Bronze Age barrows near Bronze Age house sites might represent the exception, rather than the rule.

2. Bronze Age barrows on settlement sites

The presence of Bronze Age barrows on, or very near, settlement sites has been attested in various parts of the Low Countries. Although the number (N=15) of sites with barrows appears to support the reconstructions presented above, one should keep in mind that most Bronze Age settlement sites are without known barrows and that on the sites listed below, the house sites often outnumber the funerary monuments.

Analyzing settlement-barrow interrelation is hampered by two obvious pitfalls: Firstly, levelled barrows may be present directly outside the excavation limits of many Bronze Age settlement sites. Secondly, barrow excavation usually focuses on the mound body proper, so that any settlement traces directly outside these will have gone unnoticed. It will be clear that in the few cases where barrows were encountered on settlement sites, it remains difficult to assess whether the barrows were contemporaneous to the settlement phase. Even where

¹ Pelikaanhof 115e, 2312 EG Leiden, q.p.j.bourgeois@umail.leidenuniv.nl

² Faculty of Archaeology, Reuvensplaats 3, PO Box 9515, 2300 RA, Leiden, S.Arnoldussen@arch.leidenuniv.nl

Figure 1: Pictorial reconstructions of Bronze Age house sites (Maldegem (left), Bovenkarspel and Elp (right) (Bourgeois 2001: 112 Fig. 1 / Louwe Kooijmans 1998: 336 Fig. 10 drawing K. Van der Velde / Butler 1969:12 drawing G. De Weerd).
information (finds, such as bronzes and pottery or radiocarbon dates) for both the settlement phase as well as the barrow is available, dates are often too imprecise to be useful. Incidentally, the spatial lay-out of the features or feature interrelation (stratigraphy, cross-cutting features) can be used to argue that the barrow(s) presumably pre-date an occupation phase. On only seven sites are barrows possibly or presumably contemporaneous to the settlement (Table 1, above). In the other half of the cases, the barrow may well be (much) older. The sites of Angelsloo and Hijken are a special case in point, as during the MBA-B, both older barrows were reused for additional interments, while also new barrows were erected near to a settlement site. We are inclined to interpret this erection of new barrows as being more related to the pre-existing funerary landscape than to the contemporary settlement. In any case, the limited number of MBA-B barrows that are associated with MBA-B houses calls for a more detailed, individual assessment of their dating (see below).

<table>
<thead>
<tr>
<th>Site</th>
<th>Dates for barrow</th>
<th>Dates for settlement</th>
<th>Relation</th>
<th>Remarks</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angelsloo</td>
<td>n.a.</td>
<td>14C, house-typology: MBA-B</td>
<td>unclear</td>
<td>no dates for barrow, no grave</td>
<td>Hesing 1991</td>
</tr>
<tr>
<td>Velsen - Velserbroek</td>
<td>(14C), house-typology: MBA-B</td>
<td>14C dates in prep.</td>
<td>barrow possibly contemporaneous</td>
<td>houses possibly MBA-B/LBA</td>
<td>Bosman & Soonius 1990</td>
</tr>
<tr>
<td>Regteren Altena et al. 1977: 250; Lanling & van der Plicht 2003: 186, 198</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Summary of barrow - settlement interrelations.
3. The dating of Bronze Age houses

3.1 Defining Bronze Age settlement sites

Ample Bronze Age settlement sites are known from the Low Countries. What the defining traits of (prehistoric) settlements actually are, however, is subject to much debate. Various classification systems have been proposed, which can be subdivided into classifications related to the numbers of houses (assumed to have functioned contemporaneously), the patterning (structure) of the settlement remains, socio-political interpretations, settlement dynamics or topographical locations. In most definitions, the domestic functions of a settlement site (the place to shelter people and prepare food) are deemed paramount. Thus, the presence of a single house plan would de facto lead to an interpretation as a settlement site. Of course, various types of non-domestic sites co-existed (and overlap). Fields, pastures, barrows, grave fields, production sites, extraction camps and cultic sites are very different on a theoretical level from domestic sites. In practise, the small selections studied in coring campaigns and test trenching often hamper site interpretation. Settlement sites can be recognised from the presence of a wide variety of archaeological phenomena. Generally, features of varied nature (stakes, postholes, pits and ditches) are found in association with various categories of material culture (burned and unburned flints, bone stone and ceramics). Non-domestic sites are generally characterized by a more restricted set of features and/or find-categories. Taphonomical processes influence this variation, however, and it is hardly worthwhile to strive for a quantitative threshold between domestic and non-domestic sites. Rather, it seems more promising to study if, and how the ‘life histories’ of domestic and non-domestic sites are entwined. The presence of a prehistoric house plan is as yet the most certain indicator for a domestic function of a Bronze Age site, and will consequently be used as the main point of entry for our analysis of Bronze Age settlement sites below.

3.2 Overview of the general dating of Bronze Age settlement sites with houses

Over 50 Bronze Age settlement sites with house plans are known from the Netherlands and another five from Belgium and directly adjacent parts of Germany. Although they seem to be distributed rather evenly over the various geological regions (sites are known from the boulder-clay area, the north-eastern coversand ridges, the river delta and the southern coversand areas), their distribution over the different time-periods within the Bronze Age is rather unbalanced.

Early Bronze Age settlement sites with house plans are rare, and published examples are often subject to debate (Louwe Kooijmans 1974: 167-339; Verlinde 1984; Clevis 1991; Van Heeringen, Van der Velde & Van Amen 1998; Jongste 2001). The sites of Molenaarsgraaf and Noordwijk appear to be the best documented examples. As numerous findspots of the EBA ‘barbed wire’ pattern decorated ceramics are known, this scarcity must be interpreted as indicating that EBA communities did not usually build easily recognisable houses (Arnoldussen & Fontijn in press). This lack of recognisability might be predominantly due to a lack of regularity in ground plan, to which it should be added that the Dutch EBA examples resemble in few aspects the far more regular EBA houses from Scandinavia or Germany (ibidem.).

Exactly the same line of argument must hold true for the MBA-A, or the period of the ‘Hilversum-style’ decorated ceramics. For this period too, findspots with domestic refuse prevail, without ever yielding clear house plans (cf. Ten Anscher 1990; Meijlink & Kranendonk 2002; Arts & De Jong 2004; Päffgen & Wendt 2004).

Late Bronze Age (1050-800 cal BC) settlement sites with houses, especially from the southern Netherlands, also form a minority. Recently, a Late Bronze Age date for some newly uncovered houses has been claimed, but their dating is often insecure and overall numbers of Late Bronze Age houses remain comparatively low (recent examples: Van der Velde, Benthen & Bloo 2001; Groenewoudt, Deeben & Van der Velde 2000; Hiddink 2000; Hermsen 2003: 70; Koot & Berkvens 2004; Minsaer 2004; Tol & Schabbink 2004; Bink 2005. See also Fokkens & Roymans 1991; Theunissen 1999; Bourgeois et al. 2003). From this, it might be concluded that the majority of Bronze Age settlement sites with house plans dates from the second half of the Middle Bronze Age. This unequal distribution of sites over time is also borne out by the available radiocarbon dates.

3.3 Radiocarbon dating Bronze Age settlement sites with houses

As part of a dissertation on the nature and dynamics of Bronze Age settlements from the Dutch river area (Arnoldussen in prep.), the second author has compiled an inventory of radiocarbon dates from Bronze Age settlement sites in the Netherlands. As yet, excluding the five dendrochronological dates from Zijderveld (Knippenberg & Jongste 2005: 17), 316 radiocarbon dates from over 50 settlement sites have been listed. If this dataset is narrowed down to
include only the sites yielding (claimed) Bronze Age houses. 294 radiocarbon dates for 35 sites remain. At this stage, the data set contains both samples from pits, wells, graves and soil layers, as well as samples taken with the objective to date houses, outbuildings or fences. The latter are regarded as most reliable in making inferences on the dating of settlement sites proper. Excluding the former, the 133 remaining radiocarbon dates originate from 24 sites. A histogram of the radiocarbon age (uncalibrated, in years BP) of these 133 samples shows a distinct pattern which is also – albeit less clear – observable in the larger datasets (Fig. 2.). A remarkable clustering of dates around 3150 to 3000 years BP (over 60% of the data) is noticeable. How are we to interpret this clustering?

In our opinion, this clustering is a consequence of accumulated efforts to date the regular, three-aisled longhouse that is current during the MBA-B (Arnoldussen & Fontijn in press.) The overwhelming regularity of these houses, most clearly expressed in the placements of roofbearing posts at 2.1 m mean distance from each other (ibidem), has led to a far higher degree of recognizability, and consequently in many more samples being submitted in order to date these. This might explain the peak in the frequency histogram. Nevertheless, the radiocarbon dates could be used to suggest that these regular three-aisled longhouses were erected during all sub-periods of the Middle and Late Bronze Age. Here, we would like to suggest that especially for the MBA-A, definite evidence for the construction of such regular houses is absent.

Three lines of evidence can be forwarded in support of this: firstly, settlement sites yielding solely MBA-A (‘Hilversum’-style decorated) ceramics or other finds are rare. The site of ‘Vogelenzang’ (Ten Anscher 1990) might be the sole exception, but here only a limited area (under 640 m²) was excavated and the bulk of the material recovered originated from a confined set of features (two large pits – which might equally well represent depressions in which the culture layer had been preserved – with no recognisable structures such as houses or outbuildings). In most other cases, ‘Hilversum-style’ decorated ceramics are found as a marginal component within older or younger period settlement sites (cf. Ten Anscher 1987: 32; Theunissen 1999: 209) and originate from single or restricted numbers of features. Whereas settlement sites from the MBA-B can be characterised by significant quantities of recovered artefacts and reasonable feature diversity, sites with these properties cannot be identified for the preceding MBA-A (Fontijn & Arnoldussen in prep).

Secondly, the value of the dates for claimed MBA-A houses can be criticised on the sample types and the assumed correlation of the dated sample to the (construction of the) house. The same, of course, applies to a vast proportion of the samples in the MBA-B side of the distribution. The claimed MBA-A date for houses at Dodewaard (Lanting & Mook 1977: 120-121; Theunissen & Hulst 1999: 139; Lanting & van der Plicht 2003: 160; Fokkens 2003: 16), Geldermalsen – De Bogen (Hielkema, Brokke & Meijlink 2002) and Boekel (Arts & De Jong 2004) are not backed up by sufficient arguments. Often the dating is solely based on older finds and/or charcoal which may have unintentionally been incorporated into younger postholes. The reconstructed two-aisled structures from De Bogen and Boekel furthermore have no known acceptable parallels that could sustain their interpretation.

Figure 2: Frequency diagrams at 50-year interval for radiocarbon dates structures on Bronze Age settlement sites with houses, in uncalibrated radiocarbon years BP.
Thirdly, if we approach the problem from the opposite direction – looking from which period the best-dated ‘regular three-aisled Bronze Age longhouses’ date – we get the impression that this type of house is not common prior to the 16th century BC. At the site known as Eigenblok, construction wood (post stumps) of four houses was radiocarbon dated to the MBA-B, more precisely the years between 1519 and 1215 cal BC (Jongste 2002: 35-36; Hielkema, Prangsma & Jongste 2002: 104, 119, 129, 152). The excavations at Zijderveld also yielded construction wood, which was partially dated by radiocarbon analysis and partially by dendrochronology (Knippenberg & Jongste 2005: 17). Two oak posts dated with the latter method indicate that one farmhouse at Zijderveld was presumably built between 1426 and 1390 cal BC, or at the start of the MBA-B (Knippenberg & Jongste 2005: 17). The dates from these two sites shows that direct evidence for the construction of regular three-aisled longhouses dates to the start of the MBA-B at its earliest.

3.4 Interpretation

We have argued that the large number of radiocarbon dates clustering between 3150 to 3000 years (uncalibrated) BP can be attributed to a desire to date a regular, three-aisled Bronze Age type of farmhouse. We furthermore suggest that settlement sites with houses from the MBA-A are scarce, and reliable ones absent. Rather, the available evidence points towards an introduction of the ‘regular’, ‘classic’ Middle Bronze Age longhouse during (or at the very start of) the MBA-B. This means that the bell-curve shape as suggested by the uncalibrated radiocarbon dates for settlement site with houses (Fig. 2.) is misleading. Regular three-aisled longhouses do not gradually emerge or evolve during the Middle Bronze Age as a whole, nor can the MBA-A as a whole be seen as a logical prelude or ‘availability phase’ in that sense (Bourgeois, Chernet & Bourgeois 2003, 178; Fokkens 2005: 76; reference to Rogers 2003; Cf. Zvelebil 1986). Conversely, the ‘invention’ of their specific structural properties might have been a process of – fairly rapid – change at the start of the MBA-B.

4. The dating of Bronze Age Barrows

4.1 Bronze Age barrows in the Low Countries

Since the early days of archaeology in the Low Countries, barrows have taken a central place in research. From the early 20th century onwards hundreds of these barrows have been excavated (Lohof 1991, 3-7 / Theunissen 1999, 44-45). These excavations have given us a clear insight into how the funerary ritual (for a small part of the population) was structured during the Late Neolithic up to the Early Iron Age.

Although the funerary ritual is well known, the details of the chronology are still problematic. This is partly due to the lack of grave goods. Of the hundreds of barrows excavated, only a marginal number yielded any grave goods (approximately 10%; Theunissen (1999: 86) lists 9.2% for the Southern Netherlands and Lohof (1991: 68, 125, 192) lists 10-15% for the Northern Netherlands). For the Bronze Age especially, most graves are devoid of inorganic grave goods (Lohof 1991; Theunissen 1999: 86). Where grave goods are present, these are usually ceramic vessels that, especially during the MBA, show too little morphological, technological and iconographic variation to allow them to be pinpointed chronologically.

The main problem, however, lies in the fact that most barrows were excavated well before the method of radiocarbon dating was known and widely adopted. When Glasbergen established his original typochronology of barrow types, he only had a few 14C dates at his disposition (Glasbergen 1954: 129-130). His typochronology has nonetheless been widely accepted and has been in use since (For a recent example see Drenth & Lohof 2005). Even in recent years, while the amount of available 14C dates increased, most of the dating has been done on the basis of typochronology (Lohof 1991: 41-44; Theunissen 1999: 55; Van der Veen & Lanting 1991: 195).

With the enlarged dataset of 14C dates currently available (especially through the work of Lanting and Van der Plicht (2003), who dated a large amount of cremation remains from excavated barrows), it might be possible to review this typochronology and see which elements still hold up to scrutiny in the light of the new dates.

4.2 The typochronology of the Bronze Age barrows

Whereas a reasonable set of criteria can be used to recognise Late Neolithic funerary monuments, for the later MBA however, far fewer typical traits are available (Drenth & Lohof 2005: 440). In the absence of accompanying grave goods, the structure and the build-up of the barrow have been regarded as viable criteria. The features surrounding the barrow in particular play an important role in the dating of these grave monuments.
Absence of an outer feature (ring ditch or post circle) is thought to be typical for barrows from the EBA and MBA-A, but according to the traditional view, occurs infrequently in the later periods (Drenth & Lohof 2005: 440; Van der Veen & Lanting 1991: 195). Another type of barrow is the bank-and-ditch barrow. This type of barrow has been placed quite early in the sequence and is thought to date from the EBA up to the earliest part of the MBA-A (Theunissen 1999: 59; Van Impe 1976: 17-18; Theunissen 2001, 544). Other outer structures offer little foothold. Barrows with ring ditch are very difficult to date, and can be found from the Late Neolithic up till the beginning of the MBA-B (Lohof 1991: 41; Theunissen 1999: 62). Additionally barrows with post circles were erected during several periods. The oldest post circles date to the EBA and the youngest examples can be found well into the MBA-B. But the established idea is that post circles – and especially the closely set post circles – date to the MBA-B (Drenth & Lohof 2005: 441; Lohof 1991: 159; Theunissen 1999: 55). Moreover, quite a few post circles can be dated to the Late Bronze Age (1050-800 cal BC) and Early Iron Age (800-500 cal BC). However Most of these are located in urnfields or are associated with urnfield pottery, and thus are not discussed here.

4.3 Radiocarbon dating Bronze Age Barrows

As part of the compilation of a database of Dutch excavated barrows at the University of Leiden, the first author has compiled an inventory of radiocarbon dates from barrows in the Netherlands. The total number of radiocarbon dates for Dutch barrows currently processed is 186 (Fig. 3). However, not all these dates are from equally reliable archaeological contexts, so not all of them can be used with the same degree of confidence. If we reject the dates that originate from features not directly related to the barrow (e.g. a pit under the barrow, the top-filling of a ring ditch, etcetera), the total number of radiocarbon dates decreases to 103 (Fig. 3). It is possible to narrow this dataset down further by excluding all the dates from secondary graves and events giving a terminus ante-quem to the erection of the mound. This would leave us with 62 dates. In this article however, the terminus ante-quem dates have not been excluded, as they are important to the general argument we want to make.

A histogram of the radiocarbon age (in uncalibrated years BP) shows a pattern not unlike that of the houses. An increase in sites dating to the period around 3400 and 3150 BP is evident (Fig. 3). Almost 90 % of the dates for barrows fall within this timeframe. More importantly, the range in radiocarbon age for the barrows does not overlap with the one displaying the dates for the houses (Fig. 4, below).

The peak in dates from funerary sites cannot be explained as straightforwardly as has been done for the houses. It appears that almost every type of barrow has been dated and that there are no evident biases in the sample types or locations. The number of dates originating from the north of the Netherlands is almost equal to the number originating from the south (39 versus 54) and also the different types of barrows and their surrounding features are represented equally.

Figure 3: Frequency diagrams at 50 year interval for the more restricted dataset of radiocarbon dates from all listed Bronze barrows, in uncalibrated radiocarbon years BP.
Figure 4: Combined frequency diagrams at 50 year interval for the reliable samples from listed Bronze Age barrows (light) and the radiocarbon dates from structures on Bronze Age settlement sites with houses (dark), all in uncalibrated radiocarbon years BP.

4.4 Interpretation

Detailed study of the radiocarbon dates for barrows necessitates revision of the traditional barrow typochronology (Bourgeois in prep.). It is clearly noticeable that based on the spread of the dating ranges for barrows, that the traditional view - many initial barrow phases dating to the MBA-B - is to be dismissed. Theunissen in her PhD-dissertation, for example, states that there are 108 MBA-B barrows in her study area (Theunissen 1999: table 3.2 p.57). These barrows are mainly dated on the basis of a typological argument, namely that barrows with a post circle date to the MBA-B (Theunissen 1999: 55). It is noteworthy that Theunissen herself has already suggested that post circles may also be of MBA-A dating (Theunissen 1999: 63). Indeed, several barrows with a post circle can be soundly dated to the EBA and MBA-A on the basis of 14C evidence. For the southern parts of the Netherlands, twenty barrows with post circles date to the MBA-A, while only three date to the MBA-B.

Lohof claim to know of no less than 300 barrows dating to the MBA-B (Drenth & Lohof 2005: 453 footnote 3). This number, we fear, might rely too much on typochronological arguments. This is all the more remarkable in the light of the publication by Lanting & van der Plicht who already suggested that post circle and ring ditch are contemporaneous on the basis of typological and radiocarbon evidence (2003, 157-158).

When looking at the 14C dates available to us, almost every barrow with a post circle and a 14C date falls within the MBA-A. For the whole of the Netherlands, 29 of these barrows fall into the MBA-A, and only 7 in the MBA-B. Even more so, it should be mentioned that of the latter category, 4 are a terminus ante quem for the post circle barrow. This shows that assigning barrows with post circles exclusively to the MBA-B is erroneous. On the contrary, they seem to belong more to the MBA-A than to any other period.

There are, however, some initial barrow phases with post circles that do date to the MBA-B, yet most of them are of uncommon types, such as the oval post circles of Haps (Verwers 1972: 22-26) and Zevenbergen (Modderman & Louwe Kooijmans 1966: 29-32).

Of all the barrows, only a few show a calibration range which falls into the MBA-B (14%), and even fewer (4.3%) date younger than 1400 cal BC. Other barrows can be dated to the MBA-B on the basis of finds from the graves. One such example is Elp (Waterbolk 1964),
where the bronzes of the primary grave date to period Montelius II/III (D.Fontijn pers. comm. Nov. 2005). Another example is the rich grave of Weerdinge. The bronze objects from this grave clearly place the grave in the MBA-B (Butler 1969: 114-116). It should however be recalled that only few graves contain bronzes, and even fewer have bronzes that date to the MBA-B. Theunissen for example records that 4.3% of the graves in the Southern Netherlands have bronzes, yet these all date to the MBA-A (Theunissen 1999: table 3.14 p. 87).

An overview of all the dates for barrows from the whole of the Bronze Age does not allow us (yet) to assign different outer structures to distinct periods. The dating of the main spread in dates for barrows with post circles and barrows with ring ditches shows considerable overlap and falls mainly in the MBA-A and the first quarter of the MBA-B (Fig 5). Barrows with a bank and ditch and barrows without any clear type of outer structure date predominantly to the MBA-A.

The radiocarbon data for Dutch barrows suggest that during the MBA-A barrow construction was frequent. On the basis of radiocarbon dates very few barrows can be dated to the MBA-B. This is not to say that no barrows were constructed during that period, only that much less new barrows were erected.

5. Conclusion

5.1 Interpreting barrow-settlement interrelations

We have shown that the radiocarbon dates of the barrows and the settlement sites with houses only marginally (circa 10%) overlap. The question emerges whether the perceived pattern has anything to do with the methods used. Therefore a brief examination of the possible biases is needed in order to understand the pattern. More or less half of all radiocarbon dates from settlement sites were undertaken on (unspecified) charcoal from pits or postholes, but these are supplemented by dates for wood, botanical remains (e.g. cereals) and bones, which – through their shorter life span – are inherently better sample types. The dates for barrows are mainly (approximately 60%) dated samples of unspecified charcoal. It might be the case that the so-called ‘old wood’ effect makes the barrows appear older than they are. But the dates for cremated remains show the same date-range as the ones on charcoal. In particular the dates presented by Lanting and Van der Plicht (2003) on cremation remains can be used to support the idea that the differences in date distributions for settlements and barrows represent prehistoric behaviour rather than methodological flaws. Furthermore, it should be stressed that the calibration curve for radiocarbon samples shows no evident wiggles or unconformities that would explain the different date-ranges for barrows and houses.

In addition, the use of uncalibrated radiocarbon age (years BP) could have been misleading. Do...
the datasets still show a distinctive separation after calibration? When looking at the calibrated radiocarbon dates at the 2σ ranges, the same pattern emerges (Fig. 6, below). Whereas the main spread of calibrated dates for barrows falls between 2000 and 1450 cal BC (almost 90%), the spread of calibrated dates for settlements clusters between 1450 and 1100 cal BC (almost 80%).

It should be stressed that if the patterns observed in the mound phases for which we have dates (c. 16.5%) also hold true for the mound phases for which we have no absolute dates available, the established typological dating of barrows on their outer structure or numbers of secondary interments might have led and will lead to significant distortion of our views on the dating of the latter. This calls both for caution in typologically dating barrows as well as for renewed efforts to acquire absolute dates for barrow phases. These recommendations, of course, also apply to the dating of houses and settlement sites.

In our opinion this distinct pattern reflects a distinct archaeological reality. It appears that during the MBA, the focus of communal efforts by local communities in the Low Countries shifted. Whereas in the MBA-A, communities (archaeologically visibly) gathered for the construction of large and (justly) labelled ‘monumental’ barrows, house sites are hard or impossible to identify. This is not to say that the houses of these periods – which evidently must also have existed – would not have appeared ‘monumental’, but their ground plans lack the regularity of houses of the MBA-B. The precision and consistency noticeable in MBA-B house ground plans, as well as the large area over which these properties occur, to our minds suggest a complex (both practical as conceptual), yet widely shared building tradition. We assume that it is the material realization of this tradition, the construction of large three-aisled houses, which becomes the prime focus of communal actions by local communities during the MBA-B (cf. Harsema 1993).

Having said this, we still lack an explanation as to why a shift in focus from the barrows towards

Figure 6: Diagram showing the available radiocarbon dates for structures on Bronze Age settlement sites with houses (light, N=133) and the reliable samples from listed Bronze Age barrows (dark, N=93), both in calibrated years BC. The inset shows an example of how the shapes have been compiled from the 2σ range of the radiocarbon dates.
the houses took place. A suggestion might be that notions of monumentality during the MBA-B came to be preferably expressed at the level (and place) of the household proper; at the house site. This is not to say that during the MBA-B barrows play less important roles. But their placement - as a rule outside house sites - indicates that in funerary rituals the creation of links to earlier funerary acts – by burying the dead close to or even on top of the ancestors interred in older mounds– became pivotal. The proximity of MBA-B house sites to (older) barrows, is on these grounds, not related to the interpretation offered above. It might very well be that parts of the landscape exhibiting a (former) funerary function were preferred settlement locations (Harsema 1982: 156; Kolen 2005: 45).

The point we want to make here is that the erection of a new mound on a MBA-B house site by the occupants occurred rarely. As long as it is clear that it is usually older barrows that are incorporated into house sites, we have no problems with the pictorial reconstructions (Fig. 1) with which we started our article. As a concluding remark, we should state that conversely, the dead need not have been far away on MBA-B settlement sites. The radiocarbon dates for the houses and cremation graves at Oss-De Geer (Jansen & Van Hoof 2003, 2004: 8), Breda-Hulvaker (Koot & Berkvens 2004: 61-74) and Sittard-Hoogveld (Tol & Schabbink 2004: 43) to our opinion hint at a – albeit less “monumental” – funerary tradition that might provide an alternative to the barrow rituals, one whose importance is perhaps currently underestimated. ³

Bibliography

Bourgeois Q.P.J., in prep. Bronstijdbrafritueel in de Lage landen, Leiden

³ The authors wish to thank H. Fokkens, J. Bourgeois, D. Fontijn, L. Theunissen, A. Samson and K. Wentink for their comments on earlier drafts of this article.
Butler J.J., 1969. Nederland in de Bronstijd, (Fibulareeks 31), Bussum

Fontijn D.R. & Arnoldussen S., in prep. Not just a prelude: the Hilversum culture and the start of the Dutch Middle Bronze Age (1800-1500 cal BC)

Glasbergen W., 1954. Barrow excavations in the Eight Beatitudes, the Bronze Age cemetery between Toterfout - Halve Mijl, North Brabant, (Palaeohistoria 2), Groningen

Heeringen R.M. van, Velde H. M. van der & Amen I. van, 1998. Een tweeëschiptje huisplattegrond en akkerland uit de Vroege Bronstijd te Noordwijk, provincie Zuid-Holland, (Rapportage Archeologische Monumentenzorg 55), Amersfoort

Hermes I., 2003. Wonen en graven op prehistorische gronden. Archeologisch onderzoek van nederzettingenresten uit de bronstijd en ijzertijd op de percelen Holterweg 59 en 61 te Colmschate (Gemeente Deventer), (Rapportages Archeologie Deventer 11), Deventer

Veen M. van der & Lanting J.N., 1991. A group of tumuli on the 'Hooghalen' estate near Hijken (municipality of Beilen, province of Drenthe, the Netherlands), Palaeohistoria, 31: 191-234

Waterbolk H.T., 1961. Bronzezeitliche dreischiffige Hallenhäuser von Elp (Dr.), Helinium, 1: 126-131

Waterbolk H.T., 1964. The Bronze Age settlement of Elp, Helinium, 4: 97-131

Woltering P.J., 2000. Occupation History of Texel, IV: Middle Bronze Age - Late Iron Age, Berichten van de Rijksdienst voor het Oudheidkundig Bodemonderzoek, 44: 9-396